Diseases

Public call for co-financing of research projects in 2021

Public call for co-financing of research projects in 2021

Scientific background, problem identification and objective of the proposed research Scientific background.
The number of older adults is increasing worldwide, as mortality at younger ages is decreasing.
In  addition, 50 million people suffer from dementia, and experts predict that this number will increase to  152 million by 2050

Objective.

The number of older adults is increasing worldwide, as mortality at younger ages is decreasing [1]. In  addition, 50 million people suffer from dementia, and experts predict that this number will increase to  152 million by 2050 [2]. Dementia affects not only the sufferers themselves, but also their families and  caregivers, and represents a global economic burden [3]. When considering the risk for developing  dementia, we should take a look at the life course of the individual.

A growing body of literature  supports the twelve potentially modifiable risk factors for dementia modeled by the 2020 Lancet  Commission on dementia prevention, intervention, and care: Obesity, hypertension, low education,  physical inactivity, diabetes, depression, smoking, alcohol consumption, low social contact, air  pollution, hearing impairment, and traumatic brain injury [4]. The above risks contribute to the decline  in cognitive performance and ultimately dementia. It is well documented that cognitive deficits cause  progression towards dementia [5,6].

It has been suggested that impairment in executive functions,  attention, and working memory are the earliest and most prominent cognitive symptoms [7].  Individuals with better developed cognitive abilities are less likely to develop and more likely to  postpone the onset of dementia [8]. People in good physical condition can tolerate a higher  neuropathological load without suffering cognitive impairment [9]. The association between a low  cognitive score and high risk or incidence of injury indicates a direct relationship between higher  cognitive control and executive function [10,11].  

To date, no effective pharmacological drug has been developed to reverse dementia, and the side  effects of symptom alleviating drugs may not outweigh their benefits [12]. Non-pharmacological  approaches seem desirable to prevent cognitive decline and consequently dementia. Physical exercise  and cognitive training have been suggested as possible strategies to protect against dementia [4]. A meta-analysis of longitudinal observational studies showed that physical exercise is associated with a  reduced risk of dementia [4]. In Framingham Study, the authors prospectively followed 3,714  participants (70 ± 7 years) for the development of incident dementia over a period of up to 10 years.  Results showed that lower baseline physical activity was associated with a higher risk of dementia,  suggesting that individuals may benefit from staying physically active into old age [13].

Physical activity  has been found to prevent cerebral atrophy or even increase hippocampal volume [14]. Furthermore,  a recent review found that up to 82% of total brain gray matter volume can be altered by physical  activity [15], providing additional scientific evidence for the use of physical activity as a lifestyle  intervention. However, studies that examined the effect of exercise interventions on cognitive  performance showed conflicting results. A systematic review of exercise intervention studies on

Conclusions.

The foreseen achievements are to identify the benefits of combined physical exercise and cognitive  training. It is hypothesized that the EXP group will improve significantly and clinically meaningful in the  domains of their functional status (cognitive and physical domains) after the intervention compared  to the CON group.

We will use novel instrumentation for sensitive detection of cognitive adaptation  after a period of physical exercise and cognitive training. Based on our findings, we could develop  guidelines and exercise protocols (physical and cognitive) aimed at improving cognitive and physical performance, thus improving the quality of life of HD patients.

Importantly, in case our hypotheses will  be confirmed, we will be able to offer evidence-based improvement of chronic renal-replacement  therapy programs. Since I have full-time employment at the nephrology department of University  Medical Centre, the long-term follow-ups are feasible and successful interventions (physical and  cognitive) will become a regular clinical practice for HD patients. 

Download Full Document here

References.

1. World Report on Ageing and Health; World Health Organization, 2015; 

2. Patterson, C. World Alzheimer Report 2018 ; London, 2018; 

3. Abbott, A. Dementia: A problem for our age. Nature 2011, 475, S2–S4. 

4. Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield,  J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission; Lancet  Publishing Group, 2020; Vol. 396;. 

5. Messier, C.; Gagnon, M. Cognitive decline associated with dementia and type 2 diabetes: The interplay of risk factors.  Diabetologia 2009, 52, 2471–2474. 

6. Pal, A.; Pegwal, N.; Kaur, S.; Mehta, N.; Behari, M.; Sharma, R. Deficit in specific cognitive domains associated with  dementia in Parkinson’s disease. J. Clin. Neurosci. 2018, 57, 116–120. 

7. Kehagia, A.A.; Barker, R.A.; Robbins, T.W. Neuropsychological and clinical heterogeneity of cognitive impairment and  dementia in patients with Parkinson’s disease. Lancet Neurol. 2010, 9, 1200–1213. 

8. Karr, J.E.; Graham, R.B.; Hofer, S.M.; Muniz-Terrera, G. When does cognitive decline begin? A systematic review of  change point studies on accelerated decline in cognitive and neurological outcomes preceding mild cognitive  impairment, dementia, and death. Psychol. Aging 2018, 33, 95–218. 

9. Wallace, L.M.K.; Theou, O.; Godin, J.; Andrew, M.K.; Bennett, D.A.; Rockwood, K. Investigation of frailty as a  moderator of the relationship between neuropathology and dementia in Alzheimer’s disease: a cross-sectional  analysis of data from the Rush Memory and Aging Project. Lancet Neurol. 2019, 18, 177–184. 

10. Herman, D.C.; Barth, J.C. Neuromuscular Performance Varies with Baseline Neurocognition: Implications for Anterior  Cruciate Ligament Injury Risk and Prevention. Orthop. J. Sport. Med. 2015, 3, 2325967115S0009. 11. Wilkerson, G.B. Neurocognitive reaction time predicts lower extremity sprains and strains. Int. J. Athl. Ther. Train. 2012, 17, 4–9. 

12. Perneczky, R. Dementia treatment versus prevention. Dialogues Clin. Neurosci. 2019, 21, 43–51. 13. Tan, Z.S.; Spartano, N.L.; Beiser, A.S.; DeCarli, C.; Auerbach, S.H.; Vasan, R.S.; Seshadri, S. Physical Activity, Brain  Volume, and Dementia Risk: The Framingham Study. Journals Gerontol. Ser. A Biol. Sci. Med. Sci. 2016, 72, glw130. 14. Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.;  et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. U. S. A. 2011, 108,  3017–3022. 

15. Batouli, S.A.H.; Saba, V. At least eighty percent of brain grey matter is modifiable by physical activity: A review study.  Behav. Brain Res. 2017, 332, 204–217. 

16. Snowden, M.; Steinman, L.; Mochan, K.; Grodstein, F.; Prohaska, T.R.; Thurman, D.J.; Brown, D.R.; Laditka, J.N.;  Soares, J.; Zweiback, D.J.; et al. Effect of exercise on cognitive performance in community-dwelling older adults:  Review of intervention trials and recommendations for public health practice and research. J. Am. Geriatr. Soc. 201159, 704–716. 

17. Carvalho, A.; Rea, I.M.; Parimon, T.; Cusack, B.J. Physical activity and cognitive function in individuals over 60 years  of age: A systematic review. Clin. Interv. Aging 2014, 9, 661–682. 

18. Jonasson, L.S.; Nyberg, L.; Kramer, A.F.; Lundquist, A.; Riklund, K.; Boraxbekk, C.J. Aerobic exercise intervention,  cognitive performance, and brain structure: Results from the Physical Influences on Brain in Aging (PHIBRA) Study.  Front. Aging Neurosci. 2017, 8, 336. 

19. Hill, N.T.M.; Mowszowski, L.; Naismith, S.L.; Chadwick, V.L.; Valenzuela, M.; Lampit, A. Computerized cognitive  training in older adults with mild cognitive impairment or dementia: A systematic review and meta-analysis. Am. J.  Psychiatry 2017, 174, 329–340. 

20. Butler, M.; McCreedy, E.; Nelson, V.A.; Desai, P.; Ratner, E.; Fink, H.A.; Hemmy, L.S.; McCarten, J.R.; Barclay, T.R.;  Brasure, M.; et al. Does cognitive training prevent cognitive decline? Ann. Intern. Med. 2018, 168, 63–68. 21. Gates, N.J.; Rutjes, A.W.; Di Nisio, M.; Karim, S.; Chong, L.-Y.; March, E.; Martínez, G.; Vernooij, R.W. Computerised  cognitive training for maintaining cognitive function in cognitively healthy people in midlife. Cochrane Database Syst.  Rev. 2019

22. Rebok, G.W.; Ball, K.; Guey, L.T.; Jones, R.N.; Kim, H.Y.; King, J.W.; Marsiske, M.; Morris, J.N.; Tennstedt, S.L.;  Unverzagt, F.W.; et al. Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive  training trial on cognition and everyday functioning in older adults. J. Am. Geriatr. Soc. 2014, 62, 16–24. 

23. Casserly, I.; Topol, E. Convergence of atherosclerosis and Alzheimer’s disease: Inflammation, cholesterol, and  misfolded proteins. Lancet 2004, 363, 1139–1146. 

24. Cui, L.; Chen, W.; Yu, X.; Ju, C. The relationship between cognitive function and having diabetes in patients treated  with hemodialysis. Int. J. Nurs. Sci. 2020, 7, 60–65. 

25. Murray, A.M. Cognitive Impairment in the Aging Dialysis and Chronic Kidney Disease Populations: An Occult Burden.  Adv. Chronic Kidney Dis. 2008, 15, 123–132. 

26. Sehgal, A.R.; Grey, S.F.; DeOreo, P.B.; Whitehouse, P.J. Prevalence, recognition, and implications of mental  impairment among hemodialysis patients. Am. J. Kidney Dis. 1997, 30, 41–49. 

27. Kurella, M.; Mapes, D.; Port, F.K.; Chertow, G.M. Correlates and outcomes of dementia among dialysis patients: the  Dialysis Outcomes and Practice Patterns Study. Nephrol. Dial. Transplant. 2006, 21, 2543–2548. 28. Kurella Tamura, M.; Wadley, V.; Yaffe, K.; McClure, L.A.; Howard, G.; Go, R.; Allman, R.M.; Warnock, D.G.; McClellan, 12 

W. Kidney Function and Cognitive Impairment in US Adults: The Reasons for Geographic and Racial Differences in  Stroke (REGARDS) Study. Am. J. Kidney Dis. 2008, 52, 227–234. 

29. Buchman, A.S.; Tanne, D.; Boyle, P.A.; Shah, R.C.; Leurgans, S.E.; Bennett, D.A. Kidney function is associated with the  rate of cognitive decline in the elderly. Neurology 2009, 73, 920–927. 

30. Elias, M.F.; Elias, P.K.; Seliger, S.L.; Narsipur, S.S.; Dore, G.A.; Robbins, M.A. Chronic kidney disease, creatinine and  cognitive functioning. Nephrol. Dial. Transplant. 2009, 24, 2446–2452. 

31. Altmann, P.; Barnett, M.E.; Finn, W.F. Cognitive function in Stage 5 chronic kidney disease patients on hemodialysis:  No adverse effects of lanthanum carbonate compared with standard phosphate-binder therapy. Kidney Int. 200771, 252–259. 

32. Harciarek, M.”; Williamson, J.B.; Biedunkiewicz, B.; Lichodziejewska-Niemierko, M.; D˛ Ebska-S ´ Lizien´,Lizien´, A.;  Aw Rutkowski, B.” Risk Factors for Selective Cognitive Decline in Dialyzed Patients with End-Stage Renal Disease:  Evidence from Verbal Fluency Analysis. J. Int. Neuropsychol. Soc. 2012, 18, 162–167. 

33. Johansen, K.L.; Chertow, G.M.; Jin, C.; Kutner, N.G. Significance of frailty among dialysis patients. J. Am. Soc. Nephrol. 2007, 18, 2960–7. 

34. McAdams-Demarco, M.A.; Tan, J.; Salter, M.L.; Gross, A.; Meoni, L.A.; Jaar, B.G.; Kao, W.H.L.; Parekh, R.S.; Segev,  D.L.; Sozio, S.M. Frailty and cognitive function in incident hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2015, 10,  2181–2189. 

35. Kurella Tamura, M.; Larive, B.; Unruh, M.L.; Stokes, J.B.; Nissenson, A.; Mehta, R.L.; Chertow, G.M. Prevalence and  correlates of cognitive impairment in hemodialysis patients: The frequent hemodialysis network trials. Clin. J. Am.  Soc. Nephrol. 2010, 5, 1429–1438. 

36. Drew, D.A.; Weiner, D.E.; Tighiouart, H.; Scott, T.; Lou, K.; Kantor, A.; Fan, L.; Strom, J.A.; Singh, A.K.; Sarnak, M.J.  Cognitive function and all-cause mortality in maintenance hemodialysis patients. Am. J. Kidney Dis. 2015, 65, 303– 311. 

37. Griva, K.; Stygall, J.; Hankins, M.; Davenport, A.; Harrison, M.; Newman, S.P. Cognitive impairment and 7-year  mortality in dialysis patients. Am. J. Kidney Dis. 2010, 56, 693–703. 

38. Levine, B.; Stuss, D.T.; Winocur, G.; Binns, M.A.; Fahy, L.; Mandic, M.; Bridges, K.; Robertson, I.H. Cognitive  rehabilitation in the elderly: Effects on strategic behavior in relation to goal management. J. Int. Neuropsychol. Soc. 2007, 13, 143–152. 

39. Mahncke, H.W.; Connor, B.B.; Appelman, J.; Ahsanuddin, O.N.; Hardy, J.L.; Wood, R.A.; Joyce, N.M.; Boniske, T.;  Atkins, S.M.; Merzenich, M.M. Memory enhancement in healthy older adults using a brain plasticity-based training  program: A randomized, controlled study. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 12523–12528. 

40. Murray, A.M.; Tupper, D.E.; Knopman, D.S.; Gilbertson, D.T.; Pederson, S.L.; Li, S.; Smith, G.E.; Hochhalter, A.K.;  Collins, A.J.; Kane, R.L. Cognitive impairment in hemodialysis patients is common. Neurology 2006, 67, 216–223. 41. Colcombe, S.J.; Erickson, K.I.; Scalf, P.E.; Kim, J.S.; Prakash, R.; McAuley, E.; Elavsky, S.; Marquez, D.X.; Hu, L.; Kramer, A.F. Aerobic Exercise Training Increases Brain Volume in Aging Humans. Journals Gerontol. Ser. A 2006, 61, 1166– 1170. 

42. Bogataj, Š.; Pajek, J.; Buturović Ponikvar, J.; Hadžić, V.; Pajek, M. Kinesiologist-guided functional exercise in addition  to intradialytic cycling program in end-stage kidney disease patients: a randomised controlled trial. Sci. Rep. 202010

43. Groussard, C.; Rouchon-Isnard, M.; Coutard, C.; Romain, F.; Malardé, L.; Lemoine-Morel, S.; Martin, B.; Pereira, B.;  Boisseau, N. Beneficial effects of an intradialytic cycling training program in patients with end-stage kidney disease.  Appl. Physiol. Nutr. Metab. 2015, 40, 550–556. 

44. Segura-Ortí, E.; Kouidi, E.; Lisón, J.F. Effect of resistance exercise during hemodialysis on physical function and quality  of life: randomized controlled trial. Clin. Nephrol. 2009, 71, 527–37. 

45. Frih, B.; Jaafar, H.; Mkacher, W.; Ben Salah, Z.; Hammami, M.; Frih, A. The Effect of Interdialytic Combined Resistance  and Aerobic Exercise Training on Health Related Outcomes in Chronic Hemodialysis Patients: The Tunisian  Randomized Controlled Study. Front. Physiol. 2017, 8, 288. 

46. Giannaki, C.D.; Hadjigeorgiou, G.M.; Karatzaferi, C.; Maridaki, M.D.; Koutedakis, Y.; Founta, P.; Tsianas, N.; Stefanidis,  I.; Sakkas, G.K. A single-blind randomized controlled trial to evaluate the effect of 6 months of progressive aerobic  exercise training in patients with uraemic restless legs syndrome. Nephrol. Dial. Transplant. 2013, 28, 2834–2840. 

47. Liao, M.-T.; Liu, W.-C.; Lin, F.-H.; Huang, C.-F.; Chen, S.-Y.; Liu, C.-C.; Lin, S.-H.; Lu, K.-C.; Wu, C.-C. Intradialytic aerobic  cycling exercise alleviates inflammation and improves endothelial progenitor cell count and bone density in  hemodialysis patients. Medicine (Baltimore). 2016, 95, e4134. 

48. Marinho, S.M.; Moraes, C.; Barbosa, J.E. dos S.M.; Carraro Eduardo, J.C.; Fouque, D.; Pelletier, S.; Mafra, D. Exercise  Training Alters the Bone Mineral Density of Hemodialysis Patients. J. Strength Cond. Res. 2016, 30, 2918–2923. 49. Bogataj, Š.; Pajek, J.; Buturović Ponikvar, J.; Pajek, M. Functional training added to intradialytic cycling lowers low density lipoprotein cholesterol and improves dialysis adequacy: A randomized controlled trial. BMC Nephrol. 202021, 352. 

50. Parsons, T.L.; Toffelmire, E.B.; King-VanVlack, C.E. The effect of an exercise program during hemodialysis on dialysis  efficacy, blood pressure and quality of life in end-stage renal disease (ESRD) patients. Clin. Nephrol. 2004, 61, 261– 74. 

51. Barcellos, F.C.; Santos, I.S.; Umpierre, D.; Bohlke, M.; Hallal, P.C. Effects of exercise in the whole spectrum of chronic  kidney disease: a systematic review. Clin. Kidney J. 2015, 8, 753–65.13 

52. Bogataj, Š.; Pajek, M.; Pajek, J.; Buturović Ponikvar, J.; Paravlic, A. Exercise-Based Interventions in Hemodialysis  Patients: A Systematic Review with a Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2020, 9, 43. 53. Manfredini, F.; Mallamaci, F.; D’Arrigo, G.; Baggetta, R.; Bolignano, D.; Torino, C.; Lamberti, N.; Bertoli, S.; Ciurlino,  D.; Rocca-Rey, L.; et al. Exercise in Patients on Dialysis: A Multicenter, Randomized Clinical Trial. J. Am. Soc. Nephrol. 2017, 28, 1259–1268. 

54. Baggetta, R.; D’Arrigo, G.; Torino, C.; ElHafeez, S.A.; Manfredini, F.; Mallamaci, F.; Zoccali, C.; Tripepi, G. Effect of a  home based, low intensity, physical exercise program in older adults dialysis patients: a secondary analysis of the  EXCITE trial. BMC Geriatr. 2018, 18, 248. 

55. Sorensen, E.P.; Sarnak, M.J.; Tighiouart, H.; Scott, T.; Giang, L.M.; Kirkpatrick, B.; Lou, K.; Weiner, D.E. The Kidney  Disease Quality of Life Cognitive Function subscale and cognitive performance in maintenance hemodialysis patients.  Am. J. Kidney Dis. 2012, 60, 417–426. 

56. Stringuetta Belik, F.; Oliveirae Silva, V.R.; Braga, G.P.; Bazan, R.; Perez Vogt, B.; Costa Teixeira Caramori, J.; Barretti,  P.; De Souza Gonçalves, R.; Fortes Villas Bôas, P.J.; Hueb, J.C.; et al. Influence of Intradialytic Aerobic Training in  Cerebral Blood Flow and Cognitive Function in Patients with Chronic Kidney Disease: A Pilot Randomized Controlled  Trial. Nephron 2018, 140

57. Noguchi, Y.; Ito, M.; Mushika, M.; Ito, T.; Kawamura, N. The effect of n-back training during hemodialysis on cognitive  function in hemodialysis patients: A non-blind clinical trial. Ren. Replace. Ther. 2020, 6, 38. 

58. McAdams-DeMarco, M.A.; Konel, J.; Warsame, F.; Ying, H.; Fernández, M.G.; Carlson, M.C.; Fine, D.M.; Appel, L.J.;  Segev, D.L. Intradialytic Cognitive and Exercise Training May Preserve Cognitive Function. Kidney Int. Reports 20183, 81–88. 

59. Lee, S.H.; Cho, Aj.; Min, Y.-K.; Lee, Y.-K.; Jung, S. Comparison of the montreal cognitive assessment and the mini mental state examination as screening tests in hemodialysis patients without symptoms. Ren. Fail. 2018, 40, 323– 330. 

60. Dong, Y.; Sharma, V.K.; Chan, B.P.L.; Venketasubramanian, N.; Teoh, H.L.; Seet, R.C.S.; Tanicala, S.; Chan, Y.H.; Chen,  C. The Montreal Cognitive Assessment (MoCA) is superior to the Mini-Mental State Examination (MMSE) for the  detection of vascular cognitive impairment after acute stroke. J. Neurol. Sci. 2010, 299, 15–18. 

61. Sheehan, B. Assessment scales in dementia. Ther. Adv. Neurol. Disord. 2012, 5, 349–358. 62. Fabre, C.; Chamari, K.; Mucci, P.; Massé-Biron, J.; Préfaut, C. Improvement of cognitive function by mental and/or  individualized aerobic training in healthy elderly subjects. Int. J. Sports Med. 2002, 23, 415–421. 63. Anderson-Hanley, C.; Arciero, P.J.; Brickman, A.M.; Nimon, J.P.; Okuma, N.; Westen, S.C.; Merz, M.E.; Pence, B.D.;  Woods, J.A.; Kramer, A.F.; et al. Exergaming and older adult cognition: A cluster randomized clinical trial. Am. J. Prev.  Med. 2012, 42, 109–119. 

64. Jafari, M.; Kour, K.; Giebel, S.; Omisore, I.; Prasad, B. The Burden of Frailty on Mood, Cognition, Quality of Life, and  Level of Independence in Patients on Hemodialysis: Regina Hemodialysis Frailty Study. Can. J. Kidney Heal. Dis. 20207, 205435812091778. 

65. San, A.; Hiremagalur, B.; Muircroft, W.; Grealish, L. Screening of Cognitive Impairment in the Dialysis Population: A  Scoping Review. Dement. Geriatr. Cogn. Disord. 2017, 44, 182–195. 

66. Zimmermann, P.; Fimm, B. Testbatterie zur Aufmerksamkeitsprüfung (TAP) 2017. 

67. Costa, A.S.; Tiffin-Richards, F.E.; Holschbach, B.; Frank, R.D.; Vassiliadou, A.; Krüger, T.; Eitner, F.; Gross, T.; Shah, N.J.;  Schulz, J.B.; et al. Clinical predictors of individual cognitive fluctuations in patients undergoing hemodialysis. Am. J.  Kidney Dis. 2014, 64, 434–442. 

68. Noguera, C.; Sánchez-Horcajo, R.; Álvarez-Cazorla, D.; Cimadevilla, J.M. Ten years younger: Practice of chronic  aerobic exercise improves attention and spatial memory functions in ageing. Exp. Gerontol. 2019, 117, 53–60. 69. Dixit, A.; Dhawan, S.; Raizada, A.; Yadav, A.; Vaney, N.; Kalra, O.P. Attention and information processing in end stage  renal disease and effect of hemodialysis: A bedside study. Ren. Fail. 2013, 35, 1246–1250. 

70. Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H.  The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. 

71. Corrigan, J.D.; Hinkeldey, N.S. Relationships between Parts A and B of the Trail Making Test. J. Clin. Psychol. 198743, 402–409. 

72. Smith, A. Symbol Digit Modalities Test (SDMT); Western Psychological Services: Los Angeles , 1982; 73. Benedict, R.H.B.; Deluca, J.; Phillips, G.; LaRocca, N.; Hudson, L.D.; Rudick, R. Validity of the Symbol Digit Modalities  Test as a cognition performance outcome measure for multiple sclerosis. Mult. Scler. 2017, 23, 721–733. 74. Zimmermann, P.; Fimm, B. Test of Attentional Performance 2.3.1 Available online:  https://www.psytest.de/index.php?page=TAP-2-2&hl=en_US (accessed on Feb 1, 2021). 

75. Ortega-Pérez de Villar, L.; Martínez-Olmos, F.J.; Junqué-Jiménez, A.; Amer-Cuenca, J.J.; Martínez-Gramage, J.;  Mercer, T.; Segura-Ortí, E. Test-retest reliability and minimal detectable change scores for the short physical  performance battery, one-legged standing test and timed up and go test in patients undergoing hemodialysis. PLoS  One 2018, 13, e0201035. 

76. Richardson, S. The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. 

77. Bučar Pajek, M.; Čuk, I.; Leskošek, B.; Mlinšek, G.; Buturović Ponikvar, J.; Pajek, J. Six-Minute Walk Test in Renal Failure Patients: Representative Results, Performance Analysis and Perceived Dyspnea Predictors. PLoS One 2016, 14 11, e0150414. 

78. Rolfson, D.B.; Majumdar, S.R.; Tsuyuki, R.T.; Tahir, A.; Rockwood, K. Validity and reliability of the Edmonton Frail  Scale. Age Ageing 2006, 35, 526–529. 

79. Garcia-Canton, C.; Rodenas, A.; Lopez-Aperador, C.; Rivero, Y.; Anton, G.; Monzon, T.; Diaz, N.; Vega, N.; Loro, J.F.;  Santana, A.; et al. Frailty in hemodialysis and prediction of poor short-term outcome: mortality, hospitalization and  visits to hospital emergency services. Ren. Fail. 2019, 41, 567–575. 

80. Korevaar, J.C.; Merkus, M.P.; Jansen, M.A.M.; Dekker, F.W.; Boeschoten, E.W.; Krediet, R.T. Validation of the KDQOL SFTM: A dialysis-targeted health measure. Qual. Life Res. 2002, 11, 437–447. 

81. Zoladz, J.A.; Śmigielski, M.; Majerczak, J.; Nowak, L.R.; Zapart-Bukowska, J.; Smoleń ski, O.; Kulpa, J.; Duda, K.;  Drzewińska, J.; Bartosz, G. Hemodialysis decreases serum brain-derived neurotrophic factor concentration in  humans. Neurochem. Res. 2012, 37, 2715–2724. 

82. Nofuji, Y.; Suwa, M.; Sasaki, H.; Ichimiya, A.; Nishichi, R.; Kumagai, S. Different circulating brain-derived neurotrophic  factor responses to acute exercise between physically active and sedentary subjects. J. Sport. Sci. Med. 2012, 11, 83– 88. 

83. Miyazaki, S.; Iino, N.; Koda, R.; Narita, I.; Kaneko, Y. Brain‐derived neurotrophic factor is associated with sarcopenia  and frailty in Japanese hemodialysis patients. Geriatr. Gerontol. Int. 2021, 21, 27–33. 

84. Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and  regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. 

85. Briken, S.; Gold, S.M.; Patra, S.; Vettorazzi, E.; Harbs, D.; Tallner, A.; Ketels, G.; Schulz, K.H.; Heesen, C. Effects of  exercise on fitness and cognition in progressive MS: a randomized, controlled pilot trial. Mult. Scler. J. 2014, 20, 382– 390. 

86. Pierce, C.A.; Block, R.A.; Aguinis, H. Cautionary Note on Reporting Eta-Squared Values from Multifactor ANOVA  Designs. Educ. Psychol. Meas. 2004, 64, 916–924. 

87. Bogataj, Š.; Pajek, M.; Buturović Ponikvar, J.; Pajek, J. Outcome Expectations for Exercise and Decisional Balance  Questionnaires Predict Adherence and Efficacy of Exercise Programs in Dialysis Patients. Int. J. Environ. Res. Public  Health 2020, 17

88. Bogataj, Š.; Pajek, J.; Ponikvar, J.; Pajek, M. Is there a need for a weight management control program in hemodialysis  patients? The implication of exercise programs. Heal. Probl. Civiliz. 2020, 14.

Related Cases
Diseases & Injuries
Spinal Cord Injury – Motor versus Active

Active exercise provides more significant physical and mental advantages, preventing obesity, muscle atrophy, and cardiovascular disease while improving independence, and self-esteem.

Read More →
Diseases & Injuries
Incomplete Quadriplegic
incomplete quadriplegia and people with tetraplegia can now exercise from wheelchair and move their legs with a slight effort by the arms due to BEAT ...
Read More →
Diseases & Injuries
Daily exercise at home keeps Anders fit despite Sclerosis
Anders Bonde Jensen exercise with Combi Bike Plus mobility exerciser despite not being able to walk due to sclerosis. He uses it sitting in his wheelchair, and ...
Read More →
Diseases & Injuries
Parkinsons and Spinal Stenosis – Daily exercise increases my mobility
Claus Christian Gulmann, who has Parkinson's disease and spinal stenosis, exercises for at least 30 minutes every day with his Combi Bike Plus. As a ...
Read More →